内窥镜摄像系统的优势是什么?

随着电子学和数字视频技术的发展,与80年代出现了电子内窥镜,这样便不再以光纤传像,而代之以光敏集成电路摄像系统,简称CCD。内窥镜摄像系统中,微型图像传感器的CCD器件是电荷耦合器件,是在硅基片上制成的大规模面阵集成电路芯片,是一种全固态成像器件。

内窥镜摄像系统

CCD芯片借助必要的光学系统(内窥镜先端物镜)和专用的外围驱动与信号处理电路,可以将景物图像通过CCD面阵进行逐点、逐行 、逐帧依次转换 、存储 、传输,在其输出端产生一个景物图像相关的时序视频信号经电缆传输至外部电路转换处理系统经取样、A/D 转换、数字信号处理、D/A转换、电视信号编码,在监视器上还原成可供观察的景物图像和相关文字信息。内窥镜摄像系统主要所能显示的不但影像质量好,光亮度强,而且图像大,可以检查出更细小的病变,而且电子内窥镜的外径更细,图像更加清晰和直观,操作方便。有些内窥镜甚至还有微型集成电路传感器,将所观察到的信息反馈给计算机。它不但能获得组织器官形态学的诊断信息,而且也能对组织器官各种生理机能进行测定。

内窥镜摄像系统的优势是图像清晰,色泽逼真,分辨率高,电子内窥镜图像经过特殊处理,将图像放大,对小病灶的观察尤为适合。具有录像、储存功能,能将病变储存起来,便于查看及连续对照观察。快速照相,减少内镜检查时间。避免了光导纤维易于折断、导光亮度易于衰减、图像放大易于失真等缺点。

内窥镜摄像系统在成像上受哪些影响?

内窥镜摄像系统

内窥镜摄像系统孔探图像往往受噪声的影响显得不够清晰.引起噪声的原因很多,如敏感元器件的内部噪声、感光材料的颗粒噪声、热噪声、相对运动产生的抖动噪声、传输信道的干扰噪声、量化噪声等。反映在图像上,噪声使原本均匀和连续变化的灰度突然变大或减小,形成一些孤立点和虚假的边缘,有时甚至淹没特征,给分析带来很多困难。噪声产生的原因决定了噪声的分布特性以及它与图像信号的关系。

电子内镜由工程师精心设计操作系统,手感加倍舒适,操作更加灵活。弯角操作,采用链式牵引结构,手感轻巧,富有弹性的弯曲部,操作性能及插入性能使用户在操作时不感疲劳。内窥镜摄像系统弯曲部采用了长寿命设计,从而整机的耐久性能得到很大程度的提高。从前端开始由软至硬变化的纤细插入管,使用户在插入及转动插入管时能应用自如,更好的治疗性能,患者的痛苦感减至微小。

全防水结构,电子内镜可整体浸泡于消毒液中清洗和清毒,减少了交叉感染。方便的内镜测漏器,可及时确认内镜有否因损坏而引致进水,防止损坏。内窥镜摄像系统导光插头部采用新材料新工艺制作,结构新颖、美观、灵巧轻便。

内窥镜摄像系统是如何工作的?

内窥镜摄像系统中,电子内窥镜的成像原理是利用电视信息中心装备的光源所发出的光,经内镜内的导光纤维将光导入受检体腔内,CCD图像传感器接受到体腔内粘膜面反射来的光,将此光转换成电信号,再通过导线将信号输送到电视信息中心,再经过电视信息中心将这些电信号经过贮存和处理,然后传输到电视监视器中在屏幕上显示出受检腔器的彩色粘膜图像。目前世界上使用的CCD图像传感器有两种,其具体的形成彩色图像的方式略有不同。

内窥镜摄像系统

电子内窥镜:内窥镜主体、光学系统、光源、4个控制子系统和计算机图像处理与显示系统。内窥镜主体指内窥镜的镜身部分,包括光学成像系统、面阵CCD、传光束和调节机构。内窥镜摄像系统电子内窥镜,控制子系统包括CCD驱动电路及图像采集电路(驱动CCD、控制图像采集)、视频驱动亮度控制系统(调节光源的发光亮度)、图像畸变实时校正系统(用于实时在线校正内窥镜光学系统的畸变)和图像实时采集和显示系统(控制图像采集和显示)。

光源发出的光通过传光束(光纤),经内窥镜主体,传递到人体内部,照亮人体内腔组织需要检查部分,物镜将待检查部分成像在面阵CCD上,由CCD驱动电路控制CCD采集图像,输出标准视频信号。调节机构用于调节内窥镜前端的观察角度,可上下调节、左右调节和旋转调节。视频驱动亮度控制系统根据CCD输出的视频信号调节光源的亮度,确保输出图像上没有白色高亮度区域。由于光学系统存在畸变,CCD输出带有畸变的视频信号,图像畸变实时校正系统对其进行校正,输出校正的视频信号。内窥镜摄像系统图像实时采集和显示系统对校正视频信号进行图像采集、保存和处理,并进行病档管理。